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ABSTRACT 

This paper aims at giving a complete classification of semifree orientation 
preserving PL locally linear group actions on the sphere. 

The object of  this paper is to give a complete classification of semifree 
orientation preserving tt PL locally linear group actions on the sphere. We 

s u c c e e d  in case  the fixed set is assumed to be of codimension larger than two.* 
Our main results  are the  following: 

THEOREM A. A PL locally flat submanifold Z n o f  S ~ +k for k > 2 is the fixed 
set o f  an orientation preserving semifree PL locally linear G action on S n ÷k iff  Z 

is a Z/IGI homology sphere, R k has a free linear representation o f  G, and 
certain purely algebraically describable conditions hold for the torsion in the 
homology o f  Y. 

THEOREM B. Two orientation preserving semifree PL locally linear G 
actions on S" +k with ~. as fzxed set differ by equivariant connected sum with a 
semilinear sphere *~ i f f  the equivariant Atiyah-Singer classes for the two 
actions coincide. 

To make these theorems more explicit one needs some definitions. We 

denote by z(E) the product IllH2i(Z-point)l/IIIH2i+l(Z-point)l. This is a 

t Partially supported by an NSF PYI award and a Sloan Foundation Fellowship. 
tt For groups other than 7_,2 semifree implies orientation preserving. 
* This is a restriction only for cyclic groups. 
~t A semilinear sphere is a sphere with group action with the property that the fixed set of 

each subgroup is a sphere. 
Received May 12, 1988 
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multiplicitive analogue of the usual Euler characteristic. Poincare duality 
implies that it vanishes (i.e. equals one) if n is even. In this case, one defines 
zi/2(]~) to be the same product, but with indices only running through integers 
at most half the dimension of the manifold. In Theorem A we assert that 
the question of whether or not ~: is a fixed set can be determined purely 
algebraically from z and z]/2. (For odd order groups the condition is that the 
Swan homomorphism applied to z is trivial; for even order groups see Section 
2.) Notice that the dimension of the ambient sphere or the exact embedding of 
]E in it are both irrelevant. This is certainly not the case if k -- 2. 

The Atiyah-Singer classes referred to in Theorem B were constructed in 
[CWI] and enter in a PL G-signature theorem. They are elements of the 
cohomology theory determined by the localized L-spectrum, Ls(ZG)[ 1/IG ]], 
of grading k. We also determine which elements of the cohomology theory 
arise as characteristic classes for some action. (This is a four periodic theory, 
and the answer is also four periodic (assuming that there is a four dimensional 
free representation of G).) 

If one studies topological locally linear actions rather than PL actions, then 
the analogue of Theorem A has been known for three years already [Wel]; Z is 
a fixed set iff it is a Z/I G I homology sphere and R k has a free linear represen- 
tation of G. (The classification of topological actions with given fixed sets is 
more subtle and will be the subject of another paper; see [We3].) I do not know 
if it is possible to construct a proof of Theorem A using this and equivariant 

triangulation theory [LR]. 
On the other hand, the smooth case seems very difficult and involves a wide 

variety of different insights, ranging from improvements on the present 
technique to analyses of unstable homotopy theory of compact Lie groups and 
stable homotopy theory, to be able to attack it perpicaciously. 

These theorems have a long history. Here are some of the highlights. In his 
famous 1944 paper, P. A. Smith [Sm] showed the necessity of the homological 
condition. (The condition on the representation is part of the definition of 
local linearity.) The whole possibility of obtaining positive existence and 
classification results seemed unlikely until L. Jones [ J] made a major break- 
through and gave examples to show that only Z/[ G I homology can be 
controlled. He classified smooth* fixed sets in high codimension for cyclic 

t The smooth case is very different, because of the theorem of Connor and Floyd that asserts 
the existence of a complex structure on the normal bundle to the fixed set of any smooth semifree 
action of any group other than Z2 on any smooth manifold. 
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group actions on the disk, and made some progress on thc sphere. A. Assadi 

showed that a condition on z(E) is necessary for PL (and, afortiori, smooth) 
fixed sets for thc more general groups. In 1978, R. Schultz [Sc] (building on 
work of Jones, Alexander, Hamrick, and Vick [AHV]) completed the problem 

in the smooth case of cyclic actions, using then recent work on the Scgal 

conjecture. (P. Lofflcr [L] had earlier related the Segal conjecture to the special 

case of which homotopy spheres can bc fixed sets.) The casc of smooth actions 
on the disk was then solved in general t in unpublished work by Assadi and 

W. Browder (not necessarily assuming high codimension) and, independently, 

slightly later by the author [We2]. The PL locally linear case was completed 

jointly with S. Cappcll afterward and is a key ingredient in the present proof. 

At the same time wc proved Thcorcm A for G cyclic of prime power order 

using [CW2]. Soon after I noticed that the improvement of [CW2] duc to 

J. Davis and Lofflcr [DL] could bc used to handle all cyclic groups and all 

groups of odd order. I also realized then that one could do the topological 

locally linear case by the same method that Cappcll and I used for the PL 

locally linear case on the disk with a new wrinkle. In the topological category 

one can do infinite constructions to avoid obstructions like Assadi's condition 

on z and other surgcry obstructions which wc couldn't compute. (This was 

inspired by F. Quinn's examples [Q] of topological locally linear actions of 

non-p-groups on thc disk that had nontrivial cquivariant finiteness obstruc- 

tions and with homotopy types of fixed sets that could not arise for PL actions 

because of work of R. Oliver [O].) The present theorem is the first case that 

rcquircs control of zt/2 and was done in late 1985 making use of pieces of 
several earlier aproachcs as well as Davis' theory of numerical surgery in- 

variants [D]. 

Our proof(and paper) is organized as follows. First wc use [CWI] to obtain 
an action on D n +k with a punctured copy of Z as fixed set. Wc then try to 

analyze when the action on the boundary sphere can bc taken linear. Ultima- 

tely two interpretations of the obstruction arc necessary: one as a torsion, and 

one as a surgery obstruction. The torsion approach is sufficient to handle 

groups of odd order. Then following the smooth idea in [Sc] (scc also [CW2]) 

t Modulo di~cult lifting problems in classical homotopy theory of the type necessitated in the 
previous footnote. One case though where one gets a clean answer is Z2. A smooth submanifold 
(properly embedded) in the disk of codimension other than two is the fixed set of an orientation 
preserving smooth involution iff it is Z2-a~clic. Under those hypotheses the involution is unique 
up to conjugacy. 
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we reduce the problem to a bordism problem, again using [CW 1 ]. For this to be 
feasible it is first necessary to show that the problem does not depend on the 
ambient dimension, and consequently on the exact embedding of E. It is also 
important for reasons of computability that we do not have to control the 
equivariant normal bundle in the bordism theory as was necessary in [Sc] (as 
much less is known about BPL than BU). Since G is now assumed to have even 
order, all homology spheres are mod 2 homology spheres and the 2-torsion in 
the bordism theory can be directly computed. This enables us to reduce to the 
case where the fixed set is stably paraUelizable so that the propagation ideas of 
[CW2] together with the improved method of computing surgery obstructions 
[D] can be applied to compute the role of the obstruction in the bordism 
theory. Theorem B follows from the analogous result for the disk in [CW1]. 
I remark that the classification of semilinear PL locally linear spheres was done 
by Rothenberg and Sondow in the 1960's and will be summarised (and 

applied) below. 
I would like to thank all the many mathematicians whose work I have 

applied or built upon and those who have encouraged me over the past several 
years during different stages of this program. I especially thank Sylvain Cappell 
and Jim Davis, without whom this project would still seem (to me) impossible. 
Finally, it is appropriate to dedicate this paper to Alex Zabrodsky, a friend as 
well as colleague, whose beautiful ideas are fundamental for what follows. 

§1. Odd order groups 

In this section we shall prove Theorems A and B in case G is a group of odd 
order. In partial outline the proof is the same as the even order case. The 
difference is the endgame. In the odd order case we give a direct calculation of 
the final obstruction (which is identically zero in this case), while in the even 
order case it is necessary to work rather indirectly through a reduction to a 
cobordism calculation. It is interesting to note that the even order proof does 
not apply to the odd order case since the relevant cobordism group then has 
much too much 2-torsion (reflecting the 2-torsion present in the homology of 
fixed sets of odd order group actions on the sphere). 

TI-IEOR~.M 1. Let G be an odd order group; a PL locally flat submanifold Y~" 
of  S" + k for k > 2 is the fixed set of  an orientation preset ring semi free PL locally 
linear G action on S "+k iffE is a Z/I G I homology sphere, R k has a free linear 
representation of G, and tr(z(E))~Ko(ZG) is zero. 
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Henceforth we shall denote [G I by F. 
The definition of T was given in the introduction: it is an alternating product 

of the orders of the torsion in the homology of Z. This is a fraction with 
numerator and denominator relatively prime to F, and thus defines an element 
of(Z/F)*. The homomorphism a maps this group into Ko, and is usually called 
the Swan homomophism. One definition is that it is the boundary map in the 
Mayer-Vietoris sequence of the square: 

ZG , Z G / N  

1 1 
Z , Z/F 

where N is the norm element, i.e. the sum of all the elements of the group. 
Another definition, often more useful, but readily seen to be equivalent, is 
based on viewing/(-0 as being defined by modules of finite projective length 
(rather than projective modules) and then the map from (Z/F)* is defined by 
considering the element of K0 determined by the module with trivial G action 
of the given order. (Such a module has finite projective length according to a 
theorem of Rim. The above square is often called the Rim square.) 

The necessity of the vanishing of ~(~(Z)) is given in [A]. The main object of 
this section is to prove the sutficiency statement of the theorem. The proof 
given here is a large simplification of the one sketched in [Well. 

We begin with the classification of semilinear semffree PL spheres up, to 
concordance. 

LEMMA 1. Semifiee PL locally linear G actions on S "+k with f ixed set S ~, 
and given normal representation, up to concordance are in a one to one 

correspondence with H~+k(Z2; Wh(ZG)). The class o f  linear representation is 

represented by O. 

PROOF. This is a weakening of the result of Rothenberg and Sondow [RS] 
proven by the same method (twenty years later)! Since we are in the PL 
category the operation of removing an open disk is reversible by coning the 
boundary. Actions on the disk with fixed set a disk and given normal 
representation are in a one to one correspondence with Wh(G) by taking the 
torsion of the inclusion of a normal fiber in the complement, by an application 
of the h-cobordism theorem. The fact that the boundary is linear forces the 
torsion to be self-dual. Replacing an action by a concordant one changes this 
torsion by the norm of the cobordism. [] 
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We shall apply this to the following situation: Puncture E and use [CW1] to 
get this as a fixed set on the disk. (This already requires that Assadi's condition 
tr(z (E)) = 0 holds.) Then examine the action on the boundary sphere and show 
that it is linear. (For G of even order it won't always be.) We call the above 
invariant of a semilinear sphere S, T(S). 

Let us recall Bass's exact sequence of a localization for lower K-theory ([B]): 

K,(ZG) --- K,(Z(r)G) --" K~(ZG, Z - F) ~ Ko(ZG) -" K0(Z~na) 

where the middle term is the Groethendieck group finite projective length ZG 
modules that are annihilated by some integer relatively prime to F. For 
example, we can view the homology modules of f~, that is, Y~ punctured, as 
elements of this group. We shall in particular be interested in T(E) in 
K~(ZG, Z - F). (Notice that although the definition of a does not agree with 
the one given above, a(r) is independent of the disagreement.) 

The way that z enters is via the work of[AB] (see also [AV]), [Wel] and [CW] 
on extensions across homology collars. The relevant theorem for us is from the 
final reference and deals with the problem of extending certain semifree group 
actions on manifolds with boundary. 

The setting is this. A manifold with boundary (W, M U N) is a A-homology 
collar if H.(W, M; A) = 0. We assume for simplicity that W and N are simply 
connected. (If not, then one can jazz things up slightly using [AV].) Suppose 
that G acts semifreely, PL locally linearly, and Z[1/F]-hom61ogicaUy trivially 
on M, and Wis a Zr-homology collar. One can extend the action to one'on W 
(with a desired fixed set) iff certain cohomological conditions related to 
Atiyah-Singer classes, and certain K-theoretic conditions involving a(z), hold. 

THEOREM (Hard Extension Across Homology Collars [CW]). Under the 
assumptions made in the previous paragraph, an action with fixed set K, not of 
codimension two, is extendible to such a homologically trivial action on W with 
foced set L iff: 

(1) H.(L, K; Zr) = O, 
(2) a(r(W, M)/r(L, K)) = O, 
(3) the Atiyah-Singer classes associated with the action on M, lying in 

[K: L(G)[1/F]], extend to classes lying in [L: L(G)[1/I"]]. 
Furthermore, concordance classes of extensions are classified by the extensions 
of the Atiyah-Singer data. 

L denotes the Quinn surgery space for simple surgery (of dimension -- 
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codimension of the fixed set). Suitable relative versions are easily formulated, 

and are true. To obtain a submanifold of the disk as a fixed set one views the 

disk as a homology collar with M = a linear D n- ~ on the boundary. We 

consider the result of  this construction on E', a punctured copy of the Zr-  
homology sphere, and consider the semilinear sphere on the boundary. 

We need two more maps: 

and 
6 : H*(Z2; Ko(ZG)) ~ H* + '(Z2; Wh(G)) 

t : H*(Z2; ker a) - -  H *+ l(z2; Wh(G)). 

To define the first, one uses the fact that the norm of any projective class in 
the cohomology is 0, so that one can write down an obvious hyperbolic form, 

whose discriminant is the desired element of the target. The second is just the 

map given by the snake lemma applied to Bass's localisation sequence. 

LEMMA 2. T(S )  = + 6[a(z(X))] = + e[z(Z)]. 

Clearly (either expression for T(S )  given in) the proposition implies the 

classification Theorem B for odd order groups in light of  its independence of 

the equivariant neighborhood of Z chosen. Theorem I also follows, for observe 

that in odd dimensions the cohomology group vanishes, while in even dimen- 

sions Poincar6 duality implies that z------1. We shall only prove the second 

expression for T ( S )  although the first should be suggestive of a more direct 

surgery theoretic approach, which we will pursue in the next section on even 
order groups. (The equality of the two expressions can be taken as an algebraic 
exercise whose solution we, in any case, have no use for.) 

The proof of this equality is an exercise in the duality theorems of Poincar6- 

Lefshetz and for torsions, and the formula for torsions of unions. For 
completeness, here is the calculation: 

T ( S )  = r(S ~- ' /G --" (S ~ +~ -~ - S ~ - ' ) / G )  (definition) 

= Nr((boundary of a neighborhood o f Z ' ) ~  complement) (duality) 

so a preimage of T ( S )  under e is the final expression. (Notice that we have 

pushed into K~(ZrG) by now, which for even order groups can be quite a 

problem even as far as cohomological calculations are concerned.) The last can 

be computed using the fact that Euler characteristics can be computed using 

homology as well as chain complexes: 
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= NT(H,(D - Z', (boundary of a neighborhood of Z'))) 

= N~'(Z) -+ I. (duality) 

The result now follows. 

REMARKS. One should compare with [DL] (see the introduction for his- 
torical remarks). Also, with little extra work one sees that Theorem 1 is actually 
correct for G with normal cyclic two sylow subgroup. 

§2. Even order groups 

Our first object is to make the statement of Theorem A more precise. As 
before, Theorem B is proven along the way to proving Theorem A. 

THEOREM A'. Let p: G--" SO(k), be an orientation preserving semifree 

representation o f  a finite group G of  even order. Let Z n c S n+k be a properly 

embedded PL submanifold. There is a semifree PL locally linear G action on 

S "+k withfi.redset F iff  

(i) H,(Z' ;  Z~c)) = 0, 
(ii) a(z(Z)) = 0eK0(Z6) ,  
(iii) the image of  the numerical surgery element o f  L h(ZG) associated with 

H,(Z) is zero in H*(Z2; Wh(ZG)). 

The numerical surgery element is defined depending on the dimension as 
follows: I f  Y. is even dimensional, say dimension 2k, one defines Zl/2(Z) to be 
the alternating product of the order of  the homology of Z from dimension one 
through k - 1. (This should be viewed as analogous to what one does with 
Betti numbers: the Euler characteristic is valuable only in even dimensions, 
because duality implies vanishing in odd dimensions, so in odd dimensions 
one introduces the semicharacteristic which is the alternating sum of  half of 
the homology.) One then applies the Swan homomorphism to this element to 
get an element of  K0 which defines an element in cohomology, and thus in 
L-theory via the Rothenberg sequence. In dimension 4k + 1 one observes that 
H2k(Y~), in virtue of  its possession of  a skew-symmetric linking form, is a square 
(since it's odd order), consequently T(Z) is, and one does the same thing to its t 
square root. Finally, in dimension 4k + 3, following Davis [D], one must  be 

t In [Wel] it is erroneously stated that one computes the square root of H2t. (See the disclaimer 
on the top paragraph of p. 271 of that paper, please.) 
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more devious. Davis first shows that in dimension 3, Lh(ZG)---,LA(ZrG) 
injects where L A denotes an intermediate Wall group and A is the image of 
K~(ZG) ( = ker o). Thus to determine an element ofLh(ZG) I must specify an 
element of LA(Zr G), and this is determined by viewing z(E) as an element of 
K~(ZG, S), and as usual by now, pushing forward in an appropriate Rothen- 
berg sequence. (This element only depends on t rood 4F.) These elements are 
defined so that if one has certain sorts of surgery problems with surgery kernels 
finite of order prime to F, then the surgery obstruction is the given element. 
The reader should compare [D, We, DW1, CW] for more information and 
applications. 

We now sketch the argument. 
Step I (Independence of Atiyah-Singer data). Let O denote T(S) for a 

given choice of local data around a punctured fixed set. Suppose we have two 
different choices of Atiyah-Singer data, a and p, one proves that the boundary 
sphere has all the same simple homotopy data for these two choices, so that 
O(Y~, a) = O(~, ,8). We are now justified in referring to the obstruction as O(~). 

REMARK. AS in the previous section, Theorem B follows at this point from 
hard extension. 

Step II. O(Y~#E2) = O(YQ + O(Y~2). This is just a picture and the addition 
formula for Whitehead torsion. 

Step III (Stability). One computes (using the product and sum formulae for 
torsion) to see the obstruction does not change if one increases the dimension 
of the sphere. 

Step IV (Cobordism invariance). Let us examine homology spheres satisfy- 
ing conditions (i) and (ii) up to cobordisms satisfying the same conditions. One 
makes use of the invariance under change of Atiyah-Singer data and hard 
extension to handle the obstruction. 

Step V. Now, one invokes the computation [AHV] of the cobordism of PL 
Zo~ homology spheres to produce, at the prime 2, stably parallelisable genera- 
tors. These one handles by finding a transverse isovariant map of pairs 
(S "+k, F)~(S n+k, S ~) (raising k if necessary (step III)). At this point one 

invokes the theory of homology propagation to decide when one can use this 
map to construct the necessary actions. Theorem A follows. 

Now for the necessary details. 
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LEMMA 3. The equivariant homotopy type of  the action on normal bundle 
to E is independent of the choice of  Atiyah-Singer data. 

PROOF. At F the normal fibration is fiber homotopically trivial since the 
action extends to the complement, which is a splitting by Alexander duality. 
Away from F the homotopy theory, by nilpotence, is detected by the unequi- 
variant theory, which is pinned down by the embedding. 

As a consequence, the obvious induction using local linearity shows that 
the boundaries of the regular neighborhoods are simple homotopy equivalent. 
Step I now follows by Milnor duality n the norm of the torsion of the 
homotopy equivalence between the extensions to the complements is the 
difference between the linear obstructions of the boundary spheres, so they are 
concordant. 

Steps II and III are entirely routine and can certainly be left to the reader. 
Step IV unfortunately must be handled by a case-by-case analysis. We need a 

homological lemma analogous to well known properties of Euler characteris- 
tics and semicharacteristics. 

LEMMA 4. Let A be a Zt2)-homology disc of dimension d and Y., its bound- 
ary. Then: 

(i) i f  d is l mod 4 then z(A)/zl<2(~,) is a rational square, 
(ii) i fd  is even then z(A) 2 = z(E). 

Note that one can apply the lemma to homology spheres by puncturing 
them. We leave the lemma's proof to the reader. (See [K] for the analogue of(i) 
for the Euler characteristic.) 

PROPOSmON I. Suppose one has a homology collar situation where the 
.4tiyah-Singer classes extend but the Swan condition does not hold. Then one 
can construct an action on the other end compatibly with the remaining data iff 
the image of[tT(z(W, M)/T(L, K))] in Lh(ZG) vanishes. 

PROOF. If the element actually vanished, then one could extend across the 
homology collar. However if it does not, then the proof of extension across 
homology collars (see [We]) produces a projective coboundary of a surgery 
problem on the other end whose ordinary solution would produce the action. 
The finiteness obstruction of the projective coboundary is easily identified 
with this element, so the result follows from the definition of the map in the 
Rothenberg sequence. 

Cobordism invariance, except in dimension 4k -F 2, now follows from the 
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lemma and proposition since, by using step I, we can assume that all the 
Atiyah-Singer data is trivial. In dimension 4k + 2 one stabilises first and then 
connect sums the cobordism with an appropriate lens space to obtain the Swan 
condition. 

At this point we actually have that for a Swan homology sphere the 
difference between O(Z) and the element described in the theorem is an 
invariant of bordism of Zr homology spheres. 

To complete the final step observe that we therefore have a homomorphism 
(in light of step II) from this bordism (or at least the subgroup represented by 
Swan spheres) to H(Z2; Wh(ZG)), a 2-group. We localise at 2. Then the 
bordism group is given by an analogue of the usual surgery exact sequence and 
one gets 

L. + ~(Zr) --" f~s  (Zr) --* 0 

(see e.g. [AHV] for why the next term is infinitely generated odd torsion). 
Therefore, modulo an easily eliminated Kervaire obstruction, one obtains the 
result unless n is 3 mod 4. In that case the L-group is infinitely generated. 
Therefore, the only homology spheres that we have to examine are produced 
by a Wall realisation to the standard sphere, and are in particular stably 
parallelisable. 

Raising dimensions to be in a stable range (step III) Spanier-Whitehead 
theory produces a map (S"+N,Z)---(S"+N,S"). View this as a transverse 

isovariant propagation problem as in the final section of [CW1]. Using the 
result of Davis cited above we can do the calculation of the necessary surgery 
obstruction in LA(ZrG). The argument now is similar to one in [DW2] (see 
also the papers [CW3, DWl, We l] for cases where there are no boundary 
contributions). 

The general machinery produces a degree one normal invariant for the 
homotopy exterior (constructed by Zabrodsky mixing) which is a homeomor- 
phism on the boundary. The surgery obstruction of this normal invariant, 
pushed into H*(Z2; Wh(ZG)), is O(g) by an analogue of Proposition 1, proven 
exactly the same way. We must first relate this normal invariant to a normal 
invariant for the linear action by making use of a normal cobordism from X to 
S. The following is very useful: 

PROPOSITION 2 ([D2]). I f  one takes the product of any simply connected 
local normal invariant with a space form, the obstruction in L~(Zr G) lies in the 
image of the assembly map. 
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Davis deduces this from [DW1] by showing that that paper computes the 
result of surgering products of space forms with nondegree one maps between 
zero manifolds, and then using these maps to generate the simply connected 
local L-group. 

We can, using this proposition, glue onto both domain and range the normal 
cobordism from Y~ to S crossed with S k-  ~/G without changing any surgery 
obstructions, and the composite map to the linear model lies in the image of 
ooze (see [CW3, DW 1, DW2, We 1 ]) since the map is a homeomorphism on the 
boundary. Modulo ooze, then, the obstruction for the original surgery problem 
is the negative of the surgery of the complement to the linear complement 
which is, by the numerical theory of[Dl], its z, which is, by duality, up to sign, 
T(Z). Since the image of ooze vanishes in H*(Z2; Wh(ZG)) (since manifolds 
have canonical structures of simple Poincar6 complexes) the ambiguity does 
not effect the image of the surgery obstruction in the cohomology. The proof is 
complete. 
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